Crosstrack Infrared Sounder (CrIS) Overview

December, 1999

CrIS Overview

CrIS is Part of the Overall CrIMSS Sensor Suite

CrIS Overview

Overall Architecture for Generating CrIMSS Data Products

Sensor Design

Baseline CrIS Sensor Design

- 8 cm Clear Aperture
- 4-Stage Split-Patch Passive Cooler
 - 81K LWIR patch temperature
 - 98K MWIR/SWIR patch
- High-Performance PV Detectors
- 3 x 3 Arrays (14 km IFOVs)
- 3 Spectral Bands
- All-Reflective Telescope
- Proven Bomem Plane-Mirror
 Michelson Interferometer With
 Dynamic Alignment
- Deep-cavity Internal Calibration
 Target based on MOPITT design
- Two-Axis Scene Selection Module with Image Motion Compensation
- Modular design allows future addition of active cooler and larger than 3x3 arrays

Requirement		Baseline
Volume	61 x 40 x 40 cm	61 x 40 x 40 cm
Mass	< 81 kg	76 kg*
Power	< 91 W	86 W*
Data Rate	< 1.5 Mbps	1.48 Mbps*
	•	•

^{*15%} Margin Included

Sensor Design

Cost Effectiveness Improves When Sensor Functions Map Directly to Independent Modules

Our CrIS Sensor Consists of 9 Independent Single Function Modules

3-Dimensional
Stable
Instrument
Frame

EDU1

Fabricated,
Assembled, and
Tested in Less
Than 6 Months

Proves Low-Risk
Modular
Features of CrIS
Flight Design

Greatly Reduces
Numerous
Manufacturing /
Assembly Risks

Key Lessons
Learned Are
Incorporated in
Our Design

Prototype CrIS Engineering Development Unit (EDU1) is Functioning

- Working prototype of the complete CrIS sensor
- Uses elements of the 30 separate hardware demos conducted in support of the CrIS Phase 1 program

- Key Elements of EDU1
 - Complete interferometer using CrIS flight design
 - Advanced composite / alloy structure and optical bench
 - Telescope, aft optics, and detector optics using CrIS design
 - Deep-cavity ICT using CrIS flight design
 - Two CrIS PV FPAs and preamps developed by Boeing
 - Prototype signal processing electronics circuit card
- EDU1 is a critical part of post-downselect risk elimination strategy

EDU1

Functional EDU1 Provides an Excellent Test Bed for Performance Assessment of CrIS Modules

EDU1

Outdoor Testing of EDU1 Confirms Its Ability to Accurately Detect Atmospheric Features

EDU1 Resolves
Important LWIR
Atmospheric
Features

Spectral
Calibration
Appears to Be
Very Good

System Performance

Key CrIS Sensor Performance Parameters

All Sensor
Performance
Requirements
Are Derived
From EDR
Performance
Requirements

All Values Include Margins

Sensor Parameter	Guaranteed Value
LWIR Band	650-1095 cm ⁻¹
MWIR Band	1210-1750 cm ⁻¹
SWIR Band	2155-2550 cm ⁻¹
LWIR Spectral Resolution	< 0.625 cm ⁻¹
MWIR Spectral Resolution	< 1.25 cm ⁻¹
SWIR Spectral Resolution	< 2.5 cm ⁻¹
Number of FOVs	3 x 3
FOV Diameter (Round)	14 km
FOV Motion (Jitter)	< 50 urad / axis
Mapping Accuracy	< 1.45 km
Absolute Radiometric Uncertainty	< 0.45% (LWIR) < 0.6% (MWIR) < 0.8% (SWIR)
Radiometric Stability	< 0.4% (LWIR) < 0.5% (MWIR) < 0.65% (SWIR)
Spectral Shift Errors	< 5 ppm

System Performance

Guaranteed NEdN and NEdT Performance

NEdNs Are Much Better Than Government Design Goals

Values Include
All Expected
Error Effects

15% Margin Included in NEdNs and NEdTs

System Performance

Temperature Measurement Uncertainty Profiles

CrIS Sensor Design

Summary

- CrlS Sensor Provides a Quantum Leap Forward in Meteorological Sensor Capabilities
- CrlS Sensor Uses Proven Low-Risk Components to Provide Superb Operational Capabilities
 - Proven Bomem Plane-Mirror FTS Interferometer With Dynamic Alignment
 - Advanced Boeing PV detectors in all bands
- EDU1 Prototype Has Already Demonstrated Key CrlS Performance Capabilities
- Retrieval Performance Exceeds IPO Minimum Threshold Requirements Under All Conditions